Expert-Guided Prompting and Retrieval-
Augmented Generation for Emergency
Medical Service Question Answering
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certification) should guide the process.

» Data Gap: Existing medical QA lack structured expertise
annotations and EMS-specific curated knowledge, making
expert-aligned evaluation hard.
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> Filter then Retrieve: Filter documents in KB & PR using
subject area s;, then retrieve top-M/N documents

> Retrieve then Filter: First retrieve 10xM/N candidates
from KB/PR, then filter by s; to keep top-M/N docs

s» Contribution

» EMSQA: 24.3K EMS-related QAs, covering 10 subject areas
and 4 certifications. Accompanied by EMSKB with 40K
documents and 4M Real-world patient care reports

attributes and inject them via 1) Expert-CoT (expert- “ Where do SOTA LL h:
. L X < ° °
style reasoning prompts) and 2) ExpertRAG (expert- +* Where do SOTA LLMs shine & what is the Expertise
aligned retrieval from EMS KBs + patient records). or stumble across subject Classification Performance?
. [ J [ ] [ ] ?
> Expert-CoT + ExpertRAG improves accuracy by up to areas and certification: , _ —
o ) (a) Split Model Method Supject Area Ce'rtlﬁcatmn
4.59%; 32B expertise-augmented models pass all EMS . — miF  maF miF  maF
¥ L : . : — Filter LoRA 80.72 71.92 65.87 63.45
certification simulations. EMT = bublic QWen3-4B O-shot 5543 51.61 45.77 30.49
Raw Resources - NLP Preprocessing Dataset / Structure Tasks AEMT- — ngﬂgjg 4(:-5;1‘“ gggg g‘;zé ig‘;g ;2%3
- — - HTML, PDF to TEXT Y/  EMSQA N LLM N — wenJ- 0 - : : :
;I%,—: 'WB%PAT:‘J“CE g;:;r;i 3::-1 nt':}; :;egszsﬁmls Auto _}Euestitzn‘:”'”' ECI}Dice?: IIIIIII |- Few-shot vs CoT / Expert-CoT o . Filter LoRA 79.06 70.48 65.54 63.50
.1:,:|=\ - - N S nSwer: xplanation: - Open-source vs Close-source ' others - : Qwen3-4B 0-shot 4293 31.73 44.12 25.01
-PDF P > . 3 H . P 0.0 0.5 t
QA QArsactlce : E:S;pslﬁl?f; LErggdlstance::-D.Q) UH'T‘ (?irt'f'catm"‘ - Certification level / subject area ACC (%) medicalg%eéa ons Private Qwen3-4B 4-shot 45.76 34.08 44.04 29.41
\ y [ Proof-read grammar ‘Manual f“b'e‘:“”“ea' < | ‘erformance y Public — OpenBiolLl —— Lama-33 —— OpenAl-o3 Qwen3-4B CoT 4622 3549 47.70 31.92
~ 4 Knowledge Base (KB) rivate Qwen3-32B —— Gemini-2.5
" - Youtube Videos Transcri i :
o b e - pt/PDF to TEXT Airway: = RAG
:=| - EMS Guidelines - Sectionize text by GPT-4 Auto —»(section1:""; section2: ""} - Medical RAG Baselines R o o . e o
D_ - EMS Textoook ™ ¢ anugl curate Sections o=~ Trauma: | ] ExportRAG-GT/ Filter « How much does explicit expertise injected by Expert-
KB -EMS Flashcardsj [_ Categﬂrize Chapters anua ) @ec:ﬁﬂn.?: IIII; section4: mr} _/: d I'f b I' ?
A : .
- Extract case fields " Ppatient Records (PR) ! | ("= ) Computer-Adaptive A CoT an ExpertRAG ITt baseline dCCUracy:
I - Drop fields with NAvalue ~ Auto Airway: | Simulation Exam Model Description Public Private
- NEMSIS Data - Drop case (> 70% field missing) —»>{case1:""; case2: "} +--»- ExpertRAG-Filter Acec F1  Ace  Fl
PR - Textualize tabular data Medical & OB: - - 5~ LLMs with Expert-CoT . . .
- Categorize case by EMS protocols {case1:""; case2: "} ) : Pass rate per level ) Model Prompt Public Private No-RAG Baselines
A e 5y Qwen34B  O-shot 7099 71.01 69.88 69.95
cc cc Qwen3-4B  CoT 7235 73.09 70.58 72.02
0-shot 57.67 57.76 63.86 64.76 RAG Baselines + CoT
OpenBioLLM CoT 59.88 60.34 67.01 67.77 MedRAG RAGonMed 7431 7441 71.12 73.33
(GT) Expert-CoT 61.92 62.03 68.75 69.82 i-MedRAG  Iterative RAG  77.96 78.00 74.02 76.35
Set  Sire Type  Criteria KB PR T PubIc (Filter) Expert-CoT 61.32 61.93 67.79 68.32 Sclf-BioRAG SelfRAG onBio 55.71 58.84 4572 49.67
. — . = Val Public 0-shot 8160 82.60 78.06 78.77 Gwensdh PR S o T 1o
. Train(13,021) | Semantic Avg Sim 79.21 66.45 W= Test Public [lama-3.3 CoT 81.89 83.08 85.16 86.35 Qwen3-4B Global ?3:12 ?9:1? ?5:46 ?6:8?
Public Val(1,860) . Vocab 82.95 21.14 B Test Private
Test(3,721) (Slittli‘a(t:u)c Cptw/onorm 4165 8.87 (GT} Expert-CoT 8242 83.35 86.49 87.62 RAG Baselines + Expert-CoT Apce/rr = +1.38/40.46
) Cotwinorm 6330 15.28 (Filter)  Expert-CoT 8240 83.18 86.63 87.65 ()~ " "0 0 e e B T T o
Private Test(5,669) |Semantic Avg Sim 80.75 75.35 __ = 0-shot 83.55 83.55 85.11 85.89 Qwen3-4B PR 7382 73.82 7153 72.96
Suntactic VOCab 90.89 28.26 = 4-shot 84.41 84.41 8548 86.13 Qwen3-4B  Global 79.59 79.61 76.75 77.35
(étrate) Cpt w/onorm 53.18 14.36 & EFE 32-shot 81.13 81.13 82.22 83.41 ExpertRAG-GT + CoT Apcesrr = +3.35/+2.71
Cpt w/norm  72.49 22.66 Fo I §F7 3.390p  04-shot 82.48 82.48 86.22 87.26 ExpertRAG FTR 80.97 81.34 79.13 80.00
< Qwen3- CoT 84.96 84.97 88.78 90.13 ExpertRAG RTF 81.11 81.45 79.17 80.01
. . #Choices #Answers Question Tokens Choice Tokens (GT) Expert-CoT 85.70 85.71 89.73 90.98 ExpertRAG-GT + Expert-CoT A,/ = +4.59/43.69
Data Split #Explanations =, 0¢) (ave/max)  (ave/max) (avg/max) 1okens Vocab (Filter) ~ Expert-CoT 85.57 85.60 89.50 91.20 ExpertRAG FTR 81.62 81.65 80.40 81.02
Train (13,021) 2217  401/7.00 1.00/3.00 1827/218  628/240 565303 14,017 OpenAl-o3  Oshot 9239 92.39 ExpertRAS RIE 5224 82.26 50.51 SLI6
public Val (1,860) 383 3.99/5.00 1.00/3.00 19.12/155 6.01 /44 80,215 6,629 Gemini-2.5  0-shot 89.36 89.36 ExpertRAG-Filter + Expert-CoT Ajcc/p1 = +3.44/42.59
UBHC Test (3,721) 773 4.01/6.00 1.00/3.00  18.99/135 6.10/60 161,464 8913 ExpertRAG ~ FTR 80.99  80.99 73-35 gg-;g
Total (18,602) 3132 4.01/7.00 1.00/3.00 18.50/218 6.22/240 806,982 16,032 ExpertRAG  RTF 809> 8056 P47 5.
. L 3 ® o
L 2 o o () ® fro °
s« EMSQA Statistics tests at different certification levels?
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» Syntactic (Embedding Similarity)
» Semantic (Vocab, EMS Concept)

+* Patient Records
» NEMSIS Tubular Data — Textual Data
» Knowledge Coverage (Syntactic, Semantic)
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